Tractable Goal Sdlection with

Oversubscribed Resour ces

Gregg Rabideau, Steve Chien, David McLaren

Jet Propulsion
California Institute

Laboratory
of Technology

4800 Oak Grove Dr, Pasadena, CA 91109
firstname.lastname@jpl.nasa.gov

Abstract

We describe an efficient, online goal selectionoatgm
and its use for selecting goals at runtime. Oundas on the
re-planning that must be performed in a timely neanon
the embedded system where computational resourees a
limited. In particular, our algorithm generates megtimal
solutions to problems with fully specified goal vegts that
oversubscribe available resources but have no terhpo
flexibility. By using a fast, incremental algorithngoal
selection can be postponed in a “just-in-time” fash
allowing requests to be changed or added at therliasite.
This enables shorter response cycles and greatamasmay
for the system under control.

Introduction

Consider the following properties of many autonomou
systems:

e embedded computing resources are typically scarce
response times can be critical
In other words, our algorithms must be fast. Intipalar,
for time-critical problems, we must be able to make
guarantees on responsiveness. Also consider tlogvioh:

e the time horizon is bounded (i.e. the autonomous
system does not need to be indefinitely autonomous)
some parts of the planning problem (ones that can
be well predicted) can be solved in advance
This suggests that, in many cases, we are notgtrign
solve the general “planning problem”. For exampletjve
spacecraft rarely operate for more than two wedksowt
ground communication. Therefore, onboard plans @i n
need to cover a large time frame. Also, parts @& th
planning problem can be solved well in advance.(e.g
spacecraft orbit predictions) and pre-compiled tsahs
can be utilized by the onboard planner. Limiting #tope
of the problem gives us some hope at finding effiti
solutions. Our work focuses on a restricted plagpnin
problem with a tractable solution that has a guah
worst-case complexity.

Specifically, we address the problem of providiigh-
level, goal-based autonomy for computationally tedi
robotic systems. We enable on-board and remote goal

Copyright © 2008, Association for the Advancemehfdificial
Intelligence (www.aaai.org). All rights reserved.

triggering through the use of an embedded, dynayoat
set that can oversubscribe resources. From theofset
conflicting goals, a subset must be selected tlzaimizes
a given quality metric.
Our approach solves the following problem:
Goals have fixed start times and durations (ngki
this a goal selection problem rather than an NR-har
scheduling problem).
Goals can have flexible sub-activities for exmrubut
the selection of alternative branches or timingmoa
require search (e.g. we may wait for an eventy ratr
fixed number of times, or branch based on a camdliti
but no backtracking occurs). This can be viewed as
backtrack-free hierarchical task network planning.
Goals can conflict by exceeding the limits ofustd
resources (e.g. oversubscription) with selectiosetda
on a strict priority ordering (i.e. a goal can nebe
pre-empted by any number of lower priority goals).
Goals can be added, removed, or updated atiraey t
and the “best” goals will be selected for execution
While these algorithms are general, we have
implemented them as prototype extensions to theuddir
Machine Language (VML) [Grasso 2008] execution
system. VML is advanced, multi-mission flight anognd
software developed for NASA flown on a number oftpa

and current missions including: The Spitzer Space
Telescope, Mars Odyssey, Stardust, Genesis, Mars
Reconnaissance Orbiter, Phoenix, and Dawn. The

prototype goal and resource concepts are addetheto t
language for both planning and execution purposes.
Specifically, the Goal Manager (GM) maintains tie¢ of
requested goals, their priorities, and their inteoas (i.e.
shared resource constraints). When a goal is stdainthe
GM quickly analyses the goal to determine whethranat

it should be selected for execution. When the atrtiene
approaches the scheduled start time of a seledad the
goal is committed and satisfied by spawning the
corresponding VML sequences.

Our work is motivated by experience from space
mission operations, such as autonomous operatiotiseeo
Earth Observing One satellite [GSFC] and operations
conducted by the Autonomous Sciencecraft (ASEhftlig
and ground software [Chien et al. 2005]. In ASEcrds
are detected on-board which trigger changes in goal
requests. For example, images taken of the Earthbea
processed on-board to detect interesting events asc

volcanic eruptions. These detections can then drigg
changes to upcoming goals such as increasing tbetyr
of requests for images of the same volcano. Omgtbend,

constraint has on the resource. The time rangefigsethe
temporal scope of the constraint. The last fourues
specify, respectively: the constraint value, th@ahvalue

sensorweb processing may detect similar events andof the resource in the absence of all constraitiis,

upload new goal requests in a short time frame.

We demonstrate our prototype implementation osdahe
scenarios. In the Goal Manager (GM), goal selectfon
postponed until the latest possible time, allowguals to
be added, removed or changed just prior to exetulibis
dynamic goal set enables additional autonomy ctipabi

minimum valid resource value, and the maximum valid
resource value.

There are four fundamental types of
constraints: Producer, Consumer, Assigner,
and Requirement. A Producer adds the constraint
value to the resource at the start of the time eaagd

resource

such as on-board and ground-based event triggering,subtracts it at the end (where the end may beiipfinA

similar to ASE. The GM, however, does not requirelb

planner and has theoretical guarantees on worst-cas Assigner

response time. In these scenarios, start timealsgre
assumed to be fixed. This is a reasonable assumgtie
to the nature of a spacecraft in orbit — opportesitor
communications and science observations occuregifsp

Consumer subtracts at the start and adds at the end. An
simply assigns the constraint value at a
specific time point. ARequirement specifies only a
constraint on the value of the resource over aogeaf
time (i.e. it has no effect on the resource value).

A resource constraint can be defined for any tgpe

(repeating) times. Also, we have found that many value as long as the following set of operatoravigilable:

spacecraft resource constraints can be abstraotdtet
goal level. For example, the EO-1 spacecraft caintpo
science instruments to only one target at a tinteisT for
target locations in close proximity, we must choose of
possibly many observation goals. We take advantige
these assumptions to develop efficient algorithinat t
provide advanced onboard autonomy capabilities.

Finally, we build on previous work [Rabideau and
Chien, 2008] by providing an empirical analysis ttha
supports the theoretical results. In these experisnehe
GM runs in polynomial time, generating scheduleat th
rank near optimal.

Resource Constraints

The primary driver for goal selection comes frone th
constraints on resources shared by the goals. Vifeeds
resource constraint as a value and a bound onvéhag
over a period of time. Resource constraints caste$
part of goals, activities, or sequences. A comimnabf
effects of constraints on the same resource conakypt
comprises a timeline (although we do not maintain a
explicit representation of a timeline). Resourcastraints
have the following attributes:

ResourceConstraint

{
IdType id;
ResourceType type;
TimeType start;
TimeType end;
ValueType value;
ValueType initial;
ValueType min;
ValueType max;

}

The id uniquely identifies the affected resource for the
purpose of analyzing the interaction with otherotese
constraints. Théype specifies the type of effect that the

+, -, =, <,and==. The arithmetic operators allow us to
compute resource values from a set of interactsgurce
constraints, and the boolean operators are fointesihe
validity of computed resource values. For examfie,a
single producer, we would add the produced valughéo
initial value and compare the result to the maximuatue.

If the constraint check fails, the resource vale i
considered invalid (i.e. has conflicting constrajnt

We have demonstrated four common types of resource

values:int, double, string, set<string>.
The definitions of the operators are intuitive &mple
types such as integers, doubles, and strings. é¢ter we
define them as follows: addition+) is set union,
subtraction {) is set subtraction, assignmenrd) feplaces
all values in one set with values from anothers Ig$ is a
lexicographical ordering on two sets, and equals) (
returns true if each element in one set is equaxatly
one element in the other set.

For set resources, we introduce another operatoseft
containment. This allows us to specify a constralivat
requires the computed resource value (which istaoke
values) to contain the constraint value.

Goals

We define a goal to represent the request for eixecof
an activity or set of activities. Goals have théofwing
attributes:

Goal
{
IdType id;
PriorityType priority;
TimeType start;
TimeType end,;
set<ResourceConstraint> constraints;
}
Theid is used to uniquely identify the goal. The goal
priority is used to rank goals. Trstart andend

values specify the expected temporal scope of ted. g

Due to system uncertainties at the time the goal is
requested, the start and end times contain only the
requested or expected values. Goals also maintagt af
resource constraints that must hold for the goaixerute.
Similar to the start and end times, resource caimgs
contain the requested or expected values for #mirees.

The goal attributes are used for selecting anphtithing
goals for execution. In addition, a goal must Siyeainat
is to be done when it is dispatched. Typicallystinvolves
spawning a sequence to start execution at a givee. t
Essentially, we define goals as a summary of ttentrand
effects of one or more sequences.

Example: Onboard File System

When defining goals and resources, we worked td &n
balance between a representation that is generdl an

powerful, but also has the details required foicedfiht

01 void updateSelectedGoals(g)

02 for each Goal g s in selectedGoals

03 with priority <= priority of g

04 removeg s from selectedGoals

05 for each Goal g i in allGoals

06 with priority <= priority of g

07 in decreasing priority order

08 if wasStarted(g i)

09 or isBestGoal(g i, selectedGoals)
10 addg i to selectedGoals

11

12 bool isBestGoal(g, selectedGoals)

13 for each interacting Goal g i ofg
14 ifg i is in selectedGoals

15 and g i conflicts with g

16 return false

17 return true

Figure 1: Incrementally updating the set of sekbgeals

resource analysis and goal selection. We show ¢heeip

of the representation with an example: managing an
onboard file system. This example is of particutaerest

to us because many spacecraft (including EO-1) wheest
with data products stored on an onboard file system
Typically, science activities write data to a filghile
engineering procedures read and downlink filesetded
them when appropriate to free up space.

We can model this file system with five goals dodr
resources. The goals represent file system requerstste,
delete, read, write, and format. The resourceseshay
these goals are: a set of file handles (100), dichidlisk
space (1024K), a current directory listing, andaffin an
exclusive use of the file system by certain operei

set changes, either by adding a new goal or rergoam
existing godl. While making selections, goal parameter
values (e.g. start times) are assumed to be fikied.result

is a set of non-conflicting “best” goals that halveen
selected for execution. After selections are made,
conflicting goals are retained for additional caolesation

in the event of future changes to the goal setthis
implementation, conflicts are defined by shareduese
interactions, and choices are made among confiigwals
using a strict priority rule. Only the highest piip goals
are selected, with ties broken by earliest reqgtiest (i.e.
first-come-first-served).

The Goal Manager (GM) maintains data structuras th

enable efficient goal selection and dispatch. Osite of

Each goal instance creates and adds the resourcegoals is sorted by priority so that the algorithranc

constraints for that goal type. Creating a filesaomes one
of the 100 available file handles, and produceseawiith
the specified unique ID. Deleting a file producedila
handle while consuming the file with the specifigique
ID. It also produces disk space equal to the sizbefile.
Writing to a file consumes available memory equathte
size of the data written. Both writing and readneguire
that the unique file ID is a member of the set \ddikable
file IDs, and that no other reads or writes ocduha same
time.

Each goal type also defines the required methed fo
executing the goal. For example, creating a filelldiaall
fopen() on a Unix operating system.

Goal Selection Algorithm

We present an algorithm for selecting goals with
oversubscribed resources. The pseudo-code forotteeat
the algorithm (updating the set of selected gaalshown
in Figure 1. The algorithm can be categorized espair-

based approach with no search — the constraints and

priorities define exactly which goals to choose. Weus
on the re-selection that is required when the regdegoal

efficiently perform goal selection. The goals als®asorted
by start time so that it can quickly find the nedected
goal to dispatch for execution. For each goal, @
maintains a set of interacting goals (i.e. goatd #hare a
resource) to assist resource reasoning. Accordinthé
priority rule, a goal will be selected and dispa&ithfor
execution if and only if it does not conflict witn higher
priority goal, which does not conflict with an evaigher
priority goal, etc. For example, in Figure 2 weuase that
overlapping goals conflict. Goal C is highest gtioand is
selected. Goal B is not selected because it comflvith C.
Because B is not selected, goal A is selected thargh it
is lower-priority than B. Therefore, goals A andate the

| Goal B priority=2 |

Goal A priority=1 | | Goal C priority=3 |

Figure 2: Goals A and C are selected

'Changing parameters of a goal (e.g. start timerity)
can be implemented by removing the goal and adtling
back with new values.

“best” goals.

Adding and removing goals involves three steps:
updating the sets of interacting goals, updatirey gbrted
goal sets, and updating the selected goal set.lastistep
is the most interesting and is shown in pseudo-dade
Figure 1. In this step, we first de-conflict thénaedule by
removing all goals with lower priority than the ddeeing
added or removed (lines 2-4). Higher priority goale
unaffected and can remain selected. Next, we riratea
each of the lower-priority goals (lines 5-9). Eatlng a
goal g involves adding the resource effects gofto the
effects of all selected (i.e. higher-priority) g®athat
interact withg (lines 13-18). If the combined resource
effects are invalid, theg will not be selected (lines 19-
20). Finally, dispatching goals within a given timange
simply involves finding selected goals that fall that
range. The dispatch function is intended to beedall
periodically with a small time range covering thean
future.

It is important to note that the low-priority ctinfing
goals are retained so that changes to the goatasebe
made at any time (goals added, removed, or updaiad)
goals will be dispatched from the latest set obceld
goals. Once a goal has started executing (detedinéhe
“wasStarted” function on line 8) it will thereaftdre
selected regardless of priority. A goal expiresitifis
unselected and falls in the past, or if it is seléand all of
its interacting goals completely fall in the paBkpired
goals are periodically removed from the goal séfs.a
final note, the definition of “interacting” and “oéicting”
can be arbitrary boolean operators. In this woekpurces
define which goals interact and resource calculiatiare
performed to determine conflicts.

Algorithm Analysis

We now describe the run-time computational compyexi
of our goal selection algorithms. Selecting thet lugmals
and updating the cache (lines 21-39) is:

O(MIgM + N(IgM + X i(lgM+S 1))
whereN is the number of all goald/l is the number of
selected goalsy is the number of interacting goals for
goali , andS; is the number of resources shared by goal
Goals are stored in tree data structures with sbésgpd
lookup. The first term comes from removing lowersgty
goals from the selected goals (lines 22-24). Theydo
second term comes from re-selecting the best baés
25-39).

Assuming worst case, where each goal interacts wit
every other goalX¥, == N for alli), each goal uses all
resources$ == for all i), and all goals are selected
(M==N):

O(NIgN + N(IgN + N(IgN + R)))

Or:

O(NIgN + NIgN + N JgN+ N 2R)

SinceNIgN dominatesNIgN :
ON Z4gN+N °2R)

And assuming thaR is constant (defined by the domain),
we have:

O(N 2gN)

This is a theoretical worst case complexity. Incfice,
each goal will typically use a subset of the resesy and
many of the goals will not be selected for exeautidore
importantly, goals interact with a small numberother
goals ¥ is constant) due to the temporal scope of the
resource constraints (i.e. effects on resources hanted
extent). This gives us:

o(NIgN)

Our empirical analysis (discussed in a later segtio
supports this average case bound.

Once we have cached the best goals, checkingcdispe
goal is a simple lookup in the set. Dispatchingekected
goal for execution is:

O(IgN + IgM)

The first term is from the lookup for goals due for
execution which we assume to be small (typicallg)on
The second term is from the lookup in the set técted
goals. Assuming worst case where all goals areteelgV
==N), we get:

O(IgN)

Finally, we take a look at the expected qualityhef output
of the algorithm. Our primary claim is that the @ithm is
optimal for the given priority rule. In other words goal
with priority P will always be selected in place ahy
number of goals with priority less than P. Intugliy this
follows from the decreasing priority order in whigloals
are selected. Now consider scoring the selectedl ga
with a weighted sum using weights sufficiently largt
priority P to outweigh all goals at priority ledsan P. Our
goal selection algorithm will maximize this scobet only
when the requested goals are assigned uniquetigsorif
goal priorities are not unique, the overall weighsem of
priorities depends on the order in which we setpuls
with equal priority. In our implementation, the ¢joa
submitted first is selected first. This goal, hogevmay
use more resources than the other goals with thee sa
priority, accommodating fewer goals at lower pties,
and producing an overall lower score. Our initiapérical
analysis, however, shows that our solutions dofalbfar
from the maximum score.

Algorithm Assumptions, Limitations, and
Requirements

We make several assumptions to keep the goal melect

algorithm simple and efficient.

e We do not solve the general planning problem. We
only decide which high level goals should be selct
We do not search for alternate methods of achieving
the high level goals. While less powerful, thisderno

be more accepted by spacecraft engineers who prefer

consistency and predictability. The tasks of goal
decomposition and command execution are left to an
executive or sequencing engine (e.g. VML). These
systems can be very expressive and allow goalgto b
expanded in a complex, context-dependent manner.

e We do not solve the general scheduling problera. W
only decide onwhich subset of requested goals and
activities to add to the plan, not evhenthey should
be scheduled. Goals and activities must be sulinitte
with predetermined start times. As an example afor
orbiting spacecraft with repeating science
opportunities, this restricted form of planning can
select which observation to perform on a specific
orbit, but can not select alternate overflights #or
particular observation.

e We are only reasoning at the goal level.

resources by the lower-level commands. We foursl thi
abstraction useful for many of the EO-1 resource
constraints

e We also assume that goals are ranked using tice st
priority rule. In other words, any number of low-
priority goals can be preempted by a high-priority
goal. When goals have equal priority, the goal e
requested first will take precedence (i.e. firsteo
first-served). EO-1 scientists were most comfoeabl
with this simple priority scheme.

It is worth pointing out that even with these rietitve

assumptions, the goal replacement capabilities vee a

offering far exceed what is available on typicahagcraft

today, whether implemented in general commanding

capabilities or custom flight software.

To benefit from these capabilities, however, useust
encode some additional knowledge when defining gyoal
compared to defining activities or sequences $trfot the
purpose of execution. First, users must provideestarm
of selection criteria. In our case, this is a ptjofor the
goal. The user must also specify a summary of the
expected resource usage for each goal. Where pesose
at runtime may be intricate or even implicit, goedources
force the user to define resource use in an ekphicd
predictable way. Finally, users must provide aneeigd
start and end time for the activity or sequenceiested by
the goal. This is necessary for predicting the temlp
scope of the resource use.

Resource
reasoning is performed on goal resources which are
assumed to be abstractions of the expected use of

Planning and Execution with VML

Designed as a multi-mission application, VML is oofe
the most advanced onboard execution systems in
widespread use for NASA missions [Grasso 2004].
Missions currently using VML include Odyssey, Spitz
Dawn, MRO, and Phoenix. On these missions, VML has
been used for a wide range of sequencing functions
including: launch routines, orbit insertion, enttgscent-
and-landing, science acquisition, and fault respons

We have implemented goals, resources, and the goal
selection algorithm as prototype extensions to VML.
new thread/task, the Goal Manager (GM), impleméms
goal selection algorithm and invokes the dispateictfion
periodically. Finally, new user interface functiorse
added to allow goals to be added, removed, or @thng

At runtime, we ultimately need a set of executable
commands that achieve the selected goals. Usirggirexi
VML 2.0 sequencing capabilities, we define a gehera
pattern to the language to enable goal achievemiht
flexible and robust execution. Specifically, thedaage
pattern consists of defining hierarchies, precoowniit and
effects familiar to the Al planning community. To
implement a hierarchy, a VML sequence for a goal or
activity can spawn other VML sequences for subvdis,
eventually breaking down to executable commandserwh
appropriate, sequence execution can be delayeditdaw
the preconditions to be met, allowing more flexible
execution. Finally, effects of the commands are itooed
and appropriate responses can be defined to redwrar
failures and provide more robust execution.

Autonomous Spacecr aft Operations

Our work was motivated by scenarios taken from the
Autonomous Sciencecraft Experiment (ASE) used in
operating the Earth-Observing 1 (EO-1) satellitethese
scenarios, the science team starts by providireg afslata
collect requests that oversubscribe spacecrafuress. A
baseline set of collects and alternates are sdleatwl
uplinked. During execution, on-board science prsices
may generate new goal requests [Chien et al., 2005].
Ground-based sensorweb processing may do the same
using uplinked commands [Chien et al., June 2085].
prototype Goal Manager was implemented and tested o
these scenarios. The EO-1 model consists of VML
sequences that implement activities for operatirgdr1&
including collecting and downlinking science daifide
system was run on a typical EO-1 collect-downliykle
where on-board resources (e.g. science data sjoaage
oversubscribed. At runtime, a simple spacecrafulkitor
was used to mimic command behavior, including ¢dfec
on resources. Goal request changes were simulaied a
time-tagged file containing the change specificaio

We also studied o= ;
planning and H
sequencing problems o 7
from the Mars [
Reconnaissance 5 oo 7

Orbiter (MRO) and f

the Mars Exploration % ... ¢
Rover (MER) #
missions. From these,
we identified several o
scenarios that might

Optimal —
Goal Hanager 1
Greedy Forwerd Jispatch —e—

benefit from this
technology. For

example, in data relay
scenarios an anomaly
can either trigger a
request for an
emergency relay
communication goal, § ““f
or create a relay i
opportunity from a
failed goal that
releases resources.

addition, goal

1.06

0.9

Ir

selection could be
used to maximize the
use of onboard data
storage. Rejected science goals, which at firsmséee
oversubscribe this highly-contended resource, cdudd
selected at runtime if more data storage is availéian
originally expected.

Empirical Analysis

The motivation for our experiments is to:

e Quantitatively present the difference between our
solutions and optimal solutions.

e Quantitatively present the difference between our
solutions and solutions generated by a greedy,
forward dispatch algorithm.

e Empirically show that the run-time of the algorithm
matches the theoretical analysis.

Experiments were run on two problem sets:

e Randomly generated problems
generated domains

e Randomly generated problems for the EO-1 domain
For the randomly generated domains, we identifeacisal
domain parameters that affect performance, inctudin
number of goal types (G), number of resource typds
and number of resources per goal (RPG). These ptessn
impact the level of interaction between goals. \Wpeet
higher levels of interaction to result in slowentimes, but
a higher potential for quality improvements when
compared to greedy solutions.

When generating random problem sets for either a
random domain or the EO-1 domain, we looked at the
following parameters: number of goal instances (N),
number of goals per goal type (NPG), number of gpak

for randomly

Figure 3: Empirical analyses for random and EO-1 problems.

time unit (NPT), and number of goals per priorigvel
(NPP). Again, the first three parameters impact¢irel of
goal interaction. More goals in a smaller time mangl|
have more shared resources that interfere. The
parameter, number of goals per priority level (NRFR)s
used to show that our solutions are optimal when
guaranteed (NPP = 1) and do not stray far fromnugti
otherwise (NPP > 1).

Experiments were generated using a random problem
generator. Specifically, random domains include 20
resource types and 20 goal types with each goalugmng
10 resources. The EO-1 domain contains 7 resoypest
and 5 goal types with each goal using about 3 resswon
average. Goals are defined for collecting, procgssand
downlinking data. Shared resources are definedtter
onboard data recorder and file system. For botldam@n
and EO-1 domains, we generated 300 problems sets
containing 300 goals each.

Three algorithms were used to generate soluticom f
the problems sets:

e Goal Manager (GM)

e Optimal (OPT)

e Greedy Forward Dispatch (GFD)
GM runs the algorithm described in this paper. Of&a
variant of this algorithm that tries all possiblelerings for
adding goals with equal priority. This is meant fiod
better solutions that may have been missed by Gidéhwh
breaks ties using a first-come-first-served rute.GFD,
goals with earlier requested start times are sadefitst,
ignoring the interactions with unselected goal e=is.
This simplifies the resource reasoning by removihg
need to propagate resource values into the fuiiss,

last

rejected goals are not maintained for future caersidbn,
reducing the number of interactions that must lmyaed.
GFD is used as a representative algorithm thatnmpls
and fast, but more naive at selecting goals, gigingwer
bound on both runtime and solution quality. All@ighms
were implemented in C++ and run on a Sun workstatio
configured with two 2.6 GHz AMD Opteron™ 252
processors, 16 GBytes of RAM, and the 64-bit Red Ha
Enterprise Linux operating system.

The graphs show the average runtimes (Figuret8ropt
and scores (Figure 3 top) for adding a single goahn
increasing baseline goal set for the EO-1 domaigu(g 3
right) and random domains (Figure 3 left) . The GiPhes
reported are for adding one new goal to a set gjohls
plotted on the x-axis. The scores reported are tifier
resulting set of selected goals. The score of?iesigoal is
calculated using the functio®PR.P ~ "™ where
GPR.ax is the maximum goals per priority leve,is the
priority of the goal, ant.,, is the maximum priority of all
goals. The score for a set of goals is the suntafes for
all goals in the set. This function ensures thatsbtore for
any number of goals at a lower priority will notnswp to
more than the score of a single goal at a higherity:

In these runs, start times and priorities weresehoat
random from an increasing range of values, reptiegen
typical scenarios where NPT and NPP are relatively
constant. This corresponds to the average caselexityp
analysis, and the data for random domains suppart t
@(NIgN) result. TheNIgN fit to the GM data is shown in
the graph. The EO-1 domain demonstrates the wasst ¢

Related Work

Much of the research in planning and goal selectian
focused on more general, intractable problems.
example, [Smith 2004] looks at the more generablera
that includes selecting goals and choosing theierowhen
resource usage depends on the order of the goglsf¢e a
traveling rover). Both the Squeaky Wheel Optimizati
[Joslin and Clements 1999] and the Task Swapping
[Kramer and Smith 2004] algorithms have been shtwvn
improve oversubscribed schedules by re-scheduéisggst
to allow more goals to fit. Instead, we look at aren
constrained problem that can be solved in polynbtimee,
while still providing advanced autonomy capabiktie
useful for many embedded applications.
Tractable planning solutions typically take oridghe

following three approaches:

1) focus on average case performance

2) use domain-specific knowledge to simplify the

general problem
3) apply general restrictions to the problem to make
planning tractable

In the first approach average case performance
considered for difficult applications when occasibn
failures are acceptable (e.g. with the use of Istasi
[Bonet and Geffner 2001]). When relying on averagse
performance, one must accept the fact that theritiigo
may not efficiently solve some problems. In theoset
approach, domain-specific knowledge is used to @mco
problem-specific solutions when possible including use

For

is

where nearly all goals share the same resource (theof hierarchies [Tate et al. 1994, Erol et al. 1994y et al.

onboard file system), and we see a best fit tdfasurve.
The exponential runtime of OPT is due to our naive
implementation that considers all possible orderwofg
goals with equal priority. The graphs also show GM
producing solutions with scores at or slightly lowkan
OPT (plotted on top of each other), but with GM &eT
both scoring much higher than GFD. The 95% confiden
intervals (using standard error of the mean) aosvaeh but
are very small for OPT and GM. The scores produmed
GFD are noisy due to its preference for selectinglg
with earlier start times instead of higher priarity

In other experiments we looked at performance on
problems that added larger sets of goal requestsaib
examined algorithm behavior along individual dirmens
such RPG, NPT, and NPP. The details of these

2003] or context-dependent effects [Wilkins and
DesJardins 2001]. A knowledge-based solution, hewev
is a one that is tailored for a particular problend can be
difficult to formally verify. Our work is most clety
related to the third approach, which is supportad b
theoretical work showing how the efficiency of ptarg is
related to the expressivity of the planning domain
language. For example, [Bylander 1994] and [Erohlet
1995] examine limited forms of STRIPS-style opersito
and the effect on planning complexity. [Erol et H094]
investigates restricted HTN planning. [Jonsson and
Backstrom 1998] examine how structural restrictiams
state transition graphs impact planning complefatythe
SAS+ formalism (a state variable representation)thie
goal selection problem we describe, goals havel fstart

experiments are beyond the scope of this paper, buttimes and durations. In all cases, different levefs

preliminary results support the theoretical analysi
In summary, we have empirically shown our goal
selection algorithm to:
e Exhibit low-order polynomial runtime behavior
with respect to the size of the problem
e Generate solutions near optimal and much better
than a greedy approach
In other words, with a few restrictions, we showttht is
possible to preserve alternative goal sets and r(whe
need arises) re-consider previously rejected goala
timely fashion in order to maintain high qualitygmns.

restrictions result in different guarantees onwloest case
performance of planning. For applications that caget
sufficient restrictions, planning becomes verifiabl
tractable.

A considerable amount of work has been done in the
area of online planning and execution. We list sahihe
implemented systems here. For example, SCL [ICS]
provides a procedural language for spacecraft caming
similar to VML. ESL [Gat 1996] is an execution tarage
for autonomous agents, implemented as an extethsibre
Common Lisp programming language. TDL [Simmons et

al.] extends the C++ programming language to ireltg
concept of a task. Like ESL, programs in TDL caketa
advantage of the generic language on which thepased.
The tradeoff, however, is that it can be much naliffecult

to verify programs written in an expressive languag
Model-based executives such as Titan [Williams let a
2003] and Kirk [Kim et al. 2001] use a declarative
specification of system behavior (plant model) tack
system state and compute desired sequences ofolcontr
actions. The focus of these executives is primamiythe
execution and monitoring of goals, while ours is the
selection of goals prior to execution.

Finally, our goals and resources are similar te th
concepts of goals and state variables that areatetat
JPL’s Mission Data System (MDS). MDS [Dvorak et al.
1999, Barrett et al. 2004] is a comprehensive aprdo
systems engineering and a methodology for the desigl
development of control system applications. Gokdcsion
is a core capability required by many such appbost

Conclusions

We have described a carefully constrained set stiuree
and priority reasoning capabilities designed tobenaun-
time goal selection within a limited computational
environment. These capabilities enable fast rexopétion

of goal sets which oversubscribe available rescuearel
have a strict priority ranking. We have presentetha
theoretical and an empirical analysis of our alhoni as
well as described its application to a number qiayl
spacecraft operations scenarios.

Acknowledgements

This work was performed by the Jet Propulsion
Laboratory, California Institute of Technology, wnd
contract with the National Aeronautics and Space
Administration. A special thanks to Chris Grasso\&/L
software and support.

References

A A. Barrett, R. Knight, R. Morris, R. Rasmussenission
Planning and Execution Within the Mission Data Syst
Intl Workshop on Planning and Scheduling for Space
Darmstadt, Germany, June 2004.

B. Bonet and H. Geffner, Planning As Heuristicr8ka
Artificial Intelligence 129 (2001) 5-33.

T. Bylander, The computational complexity of
propositional STRIPS planning, Artificial Intelligee 69
(1994) 165-204.

S. Chien, et al.,, Using Autonomy Flight Software t
Improve Science Return on Earth Observing Qoeynal
of Aerospace Computing, Information, and
CommunicationApril 2005.

S. Chien, et al.,, An Autonomous Earth-Observing
SensorweblEEE Intelligent System#lay/June 2005.

D. Dvorak, R. Rasmussen, G. Reeves, and A. Sacks.
Software architecture themes in JPL's Mission Data
System.n Proceedings of the AIAA Guidance, Navigation,
and Control Conferencenumber AIAA-99-4553, 1999.

K. Erol, J. Hendler, and D.S. Nau. 1994. UMCP: A
sound and complete procedure for hierarchical task
network planning. Proc Intl Conf Al Planning Sysem

K. Erol, D. Nau, V. Subrahmanian, Complexity,
decidability and undecidability results for domain-
independent planning, Artificial Int. 76 (1995) 8B-

E. Gat. ESL: A language for supporting robust plan
execution in embedded autonomous ageA®Al Fall
Symp: Issues in Plan Executjddambridge, MA, 1996.

Goddard Space Flight Center, The Earth Observing O
Mission Page, eol.gsfc.nasa.gov.

C. Grasso, P. Lock. VML Sequencing: Growing
Capabilities over Multiple Missionsln Proceedings of
SpaceOps 0&Heidelberg, Germany. May 2008.

Interface and Control Systems (ICS),
http://www.interfacecontrol.com

P. Jonsson, C. BAackstrom. State-Variable Planning
Under Structural Restrictions: Algorithms and Coextly.
Artificial Intelligence 100 (1998) 125-176.

D. E. Joslin and D. P. Clements, “Squeaky Wheel”
Optimization, Journal of Artificial Intelligence Research
(1999), 10:353-373.

P. Kim, B. Williams, and M. Abramson. Executing
reactive, model-based programs through graph-based
temporal planningProcs Intl Joint Conf Art Intell2001.

Kramer, L. A, and Smith, S. F., Task swappin% for
schedule improvement, a broader analysisProc. 14
Int’l Conf. on Automated Planning and Scheduliag04.

D. Nau, et al.. SHOP2: An HTN planning system.
Journal of Artificial Intelligence Research, 20 @3) 379-
404.

G. Rabideau and S. Chien, Runtime Goal Selectitm w
Oversubscribed Resourcégocs Intl Joint Conf Art Intell
(ICAPS), Workshop on Oversubscribed PlannpiBgdney,
Australia, September 2008.

R. Simmons and D. Apfelbaum. TDL Quick-Reference
Manual (v1.3.2). http://www-2.cs.cmu.edu/~td/tdiith,
2002.

D.E. Smith, Choosing Objectives in Over-Subsooipti
Planning, In Proc. 14th Int’l Conf. on Automatedhing
and Scheduling, 2004.

A. Tate, B. Drabble, and R.B. Kirby. 1994. O-Plan@
open architecture for command, planning, and canlno
Fox, M., and Zweben, M., eds., Intelligent Scheawli
Morgan Kaufmann Pub, San Francisco, CA. 213-239.

D. Wilkins and Marie DesJardins, A Call for
Knowledge-based Planning, Al Magazine, Volume 22, #
pp. 99-115, Spring 2001.

B.C. Williams, M.D. Ingham, S.H. Chung, and P.H.
Elliott. Model-based Programming of Intelligent
Embedded Systems and Robotic Space Explorkrs.
Proceedings of the IEEE, Special Issue on Modedind
Design of Embedded Softwandol. 91, No. 1, Jan. 2003,
pp. 212-237.

Inc.,

